Analytic Capacity, Calderón-zygmund Operators, and Rectifiability
نویسنده
چکیده
For K ⊂ C compact, we say that K has vanishing analytic capacity (or γ(K) = 0) when all bounded analytic functions on C\K are constant. We would like to characterize γ(K) = 0 geometrically. Easily, γ(K) > 0 when K has Hausdorff dimension larger than 1, and γ(K) = 0 when dim(K) < 1. Thus only the case when dim(K) = 1 is interesting. So far there is no characterization of γ(K) = 0 in general, but the special case when the Hausdorff measure H1(K) is finite was recently settled. In this case, γ(K) = 0 if and only if K is unrectifiable (or Besicovitchirregular), i.e., if H1(K ∩ Γ) = 0 for all C1-curves Γ, as was conjectured by Vitushkin. In the present text, we try to explain the structure of the proof of this result, and present the necessary techniques. These include the introduction to Menger curvature in this context (by M. Melnikov and co-authors), and the important use of geometric measure theory (results on quantitative rectifiability), but we insist most on the role of Calderón-Zygmund operators and T (b)-
منابع مشابه
Uniform Rectifiability, Calderón-zygmund Operators with Odd Kernel, and Quasiorthogonality
In this paper we study some questions in connection with uniform rectifiability and the L boundedness of Calderón-Zygmund operators. We show that uniform rectifiability can be characterized in terms of some new adimensional coefficients which are related to the Jones’ β numbers. We also use these new coefficients to prove that n-dimensional CalderónZygmund operators with odd kernel of type C2 a...
متن کاملA PROOF OF THE LOCAL Tb THEOREM FOR STANDARD CALDERÓN-ZYGMUND OPERATORS
We omit the proof. The following theorem is an extension of a local Tb Theorem for singular integrals introduced by M. Christ [Ch] in connection with the theory of analytic capacity. See also [NTV], where a non-doubling versions of Christ’s local Tb Theorem is given. A 1-dimensional version of the present result, valid for “perfect dyadic” Calder ón-Zygmund kernels, appears in [AHMTT]. In the s...
متن کاملMultilinear Calderón-zygmund Operators on Hardy Spaces
It is shown that multilinear Calderón-Zygmund operators are bounded on products of Hardy spaces.
متن کاملBilinear Square Functions and Vector-Valued Calderón-Zygmund Operators
Boundedness results for bilinear square functions and vector-valued operators on products of Lebesgue, Sobolev, and other spaces of smooth functions are presented. Bilinear vector-valued Calderón-Zygmund operators are introduced and used to obtain bounds for the optimal range of estimates in target Lebesgue spaces including exponents smaller than one.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2000